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ON THE USE OF A DISTRIBUTION-FREE PROPERTY 

IN DETERMINING A TRANSFORMATION OF ONE VARIATE SUCH THAT 

IT WILL EXCEED ANOTHER WITH A GIVEN PROBABILITY , 

Sam C.    Saunders 

0.    Summary 

Let   X  and   Y be independent random variables, with continuous 

distributions   F e 9    and   G e 4?    > on tlie sample space   3£     .    Let   u   be 

a homeomorphism from    3t    onto itself and define 

H(w) =  / F(w)dG   . 

From samples of   X  and  Y  we form   F   and   G   which are estimates of   F   and 

G , respectively, and define an estimate of   H ,  say   H , 

H(a)) =    J     F (w)dG 

for   w e £2 ,    a class of homeomorphisms linearly ordered by   H. 

Interpreting   co(Y)   as the strain under use   w  and  X  as the strength 

(of some device), then   H(w) = P[X < w(Y)]   represents the unreliability and 

H(w)    is an estimate of it.   If we use   H   to determine a use co , then what is 

the probability that the true unreliability    HM is too large?   We examine this 

~   -1. ~    -1 
problem under the assumptions that   F (F    )   and   G(G    )   are distribution-free 

with respect to    ^       and    >47      respectively.    This provides an answer in 

some cases and allows one to obtain stochastic bounds in others. 

Sponsored by the Mathematics Research Center,  United States Army under 
Contract No.: DA-11-022--ORD-2059. 



-2- * #225 

1,    Genesis of the Problem 

We were asked to consider the problem of determining the unreliability 

of a missile fuel tank for a given weight of liquid hydrocarbon fuel to be 

installed.    The volume of the tank, the specific weight of a batch of fuel and 

the temperature environment were stochastic variables. 

In the temperature-pressure range for this specific problem considerations 

of the physical and chemical properties of the fuel show that the design pressure 

is exceeded if the following event obtains:   [X < wg(Y)]   ,    where   X   is the random 

volume of the tank,    w   is the weight of the fuel installed and   g   is a known 

function (determined by the bulk modulus of the fuel, the temperature variation 

of range and the design pressure of the tank)   of  Y   the random specific weight 

of the fuel batch. 

• If a weight   w   of fuel is installed, the design unreliability of the tank, 

i. e., the probability of the pressure exceeding the design specification,    is 

H(w) = P[X < wg(Y)].    If the distribution of   X  was   F   and that of  Y   was   G, 

both known, then we could express 

00 

H(w) =   / F(wg{x))dG(x)   . 
0 

This equation defines the function   H   and hence 

(a) for a given weight   w   of fuel installed we can determine the 

design unreliability   H(w)    , 

(b) for a,specified design unreliability of at most   €   we can seek 

the maximum weight   w   for which we have   H(w) < «    . 
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However, In practice the distributions   F   and   G   are usually not known and 

we have only sample values of tank volumes and the sample values of the 

specific weights of fuel batches'with which,to arrive somehow at answers which 

correspond to the cases   (a)   and   (b). 

It is the study of the statistical problems for the situations   (a) and   (b), 

within the more inclusive formulation of the*problem that we propose, which 

constitutes the subject matter of this note. * 

2.    Introduction and Related Results 

Let   (3640t)   be a measurable space for which   (3£,-0   is a partially 

ordered set,    i. e., the relation is reflexive, transitive and such that   x -<  y 

and   y-< x   imply   x =y.    If the relation is measurable,  i.e.,  for all   x« 3t  the 

set     {yeTC  : y -4,  x}   is in Ä.   , then a distribution can be defined on    36      for 

each measure   P   on O-     by   F(x) = P[X •<  x] , with the usual interpretation of 

X  as the identity random variable (r.v.). 

If for each   xeX   the set   [X = x]   has measure zero, then the distribution 

F   is continuous.    Now  X     is called a positive sample space if and only if 

(iff)   for each   x -<  y ,    x =£ y   we have the set   [X  X x]^[X -< y]   has positive 

P-measure. 

Let   X   and   Y   be random variables taking values in the positive sample 

space   K.     with continuous distributions   F   and   G, respectively.    (The 

generalization to   Y  taking values in a space different from    36        will be seen 

to be immediate.)   Let   f2   be a set of transformations on    3fc    onto itself.    For 
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each   co € p.we have the probability that   X   precedes   «(Y)   according to 
• •     • 

given by ■ 

(2.1) H(w) = P[X -^w(Y)] =   / Fco dG 

where we make the convention that juxtaposition of functions "refers to composition 

and integrals are understood to be over the entire space     36.     .,        .   • 
• • • 

Let us assume that while   F   and   G   are unknown we can obtain'samples 

of   X  and   Y   from which we form, respectively, the estimates   F   and   G    of 

the distributions.    Thus we define an estimate of   H,-   say   H ,    by 

(2.2) H(co) = J Fco dG 

for each   w « £2  for which the integrals exist. 

Some questions of interest are:   In what sense is   H   a good estimate 

of   H"?   If   co   is known, what is the distribution of   H(co) ?    But primarily we want 

the maximum transformation   co    (as a function of   H)   for which for each   F e   y   , 

G '€ j^    we have   ' . ** . * 
•       • • 

P[H(ar) > e] <  a 

where   a   and   €   are small and specified in advance.    That Is,  we are interested 

in thp problem of using   H ID obtain what would l?e tolerance limits were   H   a 

.   probability distribution on   12. 

.If   U- consists of a single point   w,    we can without loss of generality 

.    assume it is the identity transformation.    We then have the problem of estimating, 

p = P[X -< Y]   from samples of  X   and   Y. 

•  Suppose that  36     is the real line with the usual ordering and      JJ    = J& 
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is the class of continuous distributions.    Then it is well known that the empiric 

distribution,   say   G ,    is the unique minimum variance unbiased estimate of   G . 

But, further,   p   cfefined analogously to (2.2) is the unique minimum variance 
• •      • 

unbiased estimate of   p   and   mnp   is the Mann-Whitney statistic where   m   and. 

n   are the sample sizes used in computing   F   and»   G . 

The problem analogous to ours,  i.e.,  involving   p   and   p,    has been 

studied and bounds for the corresponding estimates have been obtained for large 

sample sizes under the assumption that one of the distributions is known 

(Birnbaum-[1])   and assuming that neither of.the distributions is known (Birnbaum 

and McCarty [2]), 

•      * • 

3.   -Results 

Let < 'be.a partial ordering on the set of all transformations of 

onto itself for which   (n,  <)   is a linearly ordered subset' which is order complete. 

That is,    (n,  <) is a partially ordered set for which any two elements are comparable 

and each non-void subset of   J2  which has a lower bound has an infimum. 

For a sample of independent, r.v.'s each with the same distribution 

F e ^    ,  the estimate   F   (which is a measurable function of the sample)   of   F 

e* ~   -1 . ' 
is ample for   y        iff the random function   FF        has the same probability 

law for every   F t ^ 

We now make our assumptions: •  s 
• * 

1°       ^5    and   AJ   are classes of continuous distributions on the' 

*        • * •%£    * *       * partially ordered positive sample, space   (   X ,•*.    ) 

2°   "(n, <)   is a linearly ordered complete space of transformations on 

X     such that 
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(3.1) • coj < a)2   implies   wxfc) .< co2(x)   for all   xt X   . 
• • • .      • 

3°   f and   G   are anjple estimates for   F e ^   and   G c j£?   , 

respectively. 

Since there always 'exists a set of transformations on   36     ,  say   r , 

such that     *^  =   {FQY : Y « r}   and similarly     /if = {GQ^ : \ e A}   where   r 

and   A   each contain the identity function, it is seen in this representation 

n-*J 

that   F   is ample iff   Fv.     (or equivalently iff   y Y    )   is distribution-free with 

respect to   'J    .    We shall adopt this representation wherever convenient, 

'without comment, in what follows. * 

The set 

(3.2) $ =.   {yoi\~   :\(A   ,     Y« 
r   ,    ooefi } 

is a set of transformations on * 36   " which is, in general, partially ordered by 

< . »Let 

(3.3) . . Ho(<|>) =   /Fo^dGo    , 

(4.4) * Ho(4>) =   /FV^dGX-1 

be two functions, the second random,  defined for each   «()e$   for which the 

integrals exist.    (The functions   F   and   G   may both contain discontinuities 

and these canno't be made to coincide.) 

W£ now define for    6   an element of the range of   H 
• ■ 

(3.5) uT    =  inf {weß : H(w)   >  5} 
o 

» 
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• • • 

which by completeness of   ft Is a r, v.     Let   c   be In the range of* Ho   and   H. 

We now pick the unique . 

(3.6) 6    cO       suchthat   Ho(e€) = € 

and there exists a unique 9 . •*       • * * 
* 

(3.7) a)    e £2   such that   H(a) )  = «    . 

We now have • 

• * 
,    Theorem 1:   Let   1° ,   2° ,   38   be true and   H   and   Ho »be defined as in (2.1) and 

■ • . 

(3.4) respectively.   Then if 

(3.7.1) n D  $ . . • 

we have 

(3.8) P[H(^'6)> 0 *<   P[5 > Ho(e€)] 

with the right hand side of (3. 8) being a distribution-free bound for 

every   (F, Oe^x^   . 

Proof.    It is clear by (3. 1) with probability one that   H   is monotone-increasing 

on   n = * (always    *  3 12).    We have by the positivity of the sample space that 

H   is strictly monotone on   ft  and thus we have 

*(3.8. 1) [H(wJ  >   e] =   [£. > a, ] C  [5 > H(w )] 

  ^ -1 
because   H (cor) < 5    .    Now since       vw  \       =9     by   (3.7. 1) we have 

5   - £ «i« 

H0 (6  ) = ff (u )   that   HQ (e  )   has a distribution independent of   ft •*. Jo    is 

clear by   3" . • 

Remark:   If   H   is continuous a. s.  then we obtain equality between the probabilities 

of equation (3, 8), 
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Remark:   An example of a situation when the assumption    ß 3 *   Is satisfied 

occgors when  12  is a semi-group,with respect to composition, of homeomorphisms 

on   36    and   r   and   A   are suhfsets of   £2.   We exhibit a trivial Instance of 

•    this kind in the next section. ' • 

We now state . , 

Theorem 2:   Let   '1° ,  2° ,   3°  be true and   H   and   Ho   be defined as in (2.1) and 
• ■ *» 

(3. 4) respectively.    Then if 

(3.9) for each   (-y, XJeFxA   we have   u   >  "YCOX        for all   coeß 

then we have • « 

(3.10) . P[H(^) >.€] < P[6 > Ho(G£)] 

with the right-hand side being a distribution-free bound for every 

(F,G)e
,7x^        .* 

Proof.   -It Is clear by (3. 1) that both   H   and   H   are monotone on   S2 .   Thus 

we have 

* [H*",)^ €]    = [w'>co ]C [6 > H(oo )]   . * •   o o € «   e 
* • 

-i 
Now by (3.9) we have    vw \       <   co     and hence 

e   = H(w ) = H   (vw  X"1) < H   (CA) ) e o   '   e —     o     £ 

but   £  = Hn(e£) <: H„(co )   and since    0    ,    u eß  we have   0    < w     but then 
0£      — 0€ £'£ £   —       £ 

a.s.    U(uc) > n(e )   and it follows that 

[6>H(«e)]C*  [6>H(e£)] 

and the theorem is proved. • 
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Remark:   A useful condition which implies assumption (3.9) of theorem 2 

above, that     coX. > yw ,    is 

(3,10.1) V < ,^       and either \u<u\    or   y00 < "Y   • 

In most instances this means only that one r. v.  is stochastically smaller than 

the other and that one of the r. v. 's has a distribution which satisfies a convexity 

type condition, 
« 

Let us make the additional assumption 

4°    Y ,    \    are 1-1   transformations in   r- and A   respectively.    We 

can in Ihis case define    ' 

'-     r   ~-l ~-l' 
(3. 11),   • H  (4))   =    /FY      <t)dG\ 

We remark that by   3°*  being satisfied,     H'(<j>)   has "a distribution*which depends 
o • 

only on   <|> « $? .    Let « 

• • • • 

(3. 12) *Q =   ■{>€$: P[Ho(<t>) > E] = a} 

* • 

For   a€{0, 1),    ^     is not empty whenever there exists   6   eS2   such that 99       a .a 

■ 

P[H   (G   )•> e]  = a     '.' 

• • • 
We now state without proof: 

Theorem 3:   Let   1° ,   2°,   3°,  4°.,    be-true with   H   and   Ho   as defined as in (2.1) 

and (3. 11) respectively then if 

(3. 13)      for each    $« <£   there exists a uhique largest element in"   Si   ,    say 

^n  ' ..such that. 4>n   < *   • 
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Then writing   co    = (y       ^^o   ^or   ^« ^ 

. ^ • 
(3.14) P[H(^r) > e] < P[H   (({>) > e]   = a 

o 

and the right hand side of   (3.14) is distribution-free. 

Now we define 

(3.15) oT,  =     sup   ('V     c^T)« 
^ j.     jr. 8r 

as the element to be used in our estimate. 

Remark:   In case there exist a   (j>     such that    v       (b \   =   w   e S2 we obtain 
a a a 

equality between the probabilities in equatipn (^.14). 

4.    Examples 

Let us first give an application of theorem 1   and take      38   = (0 ,«>) j 

ß =   {Cü : a)(x)   = oac, w > 0} ,   i.e., here we take the transformatioijs   w  to be 

scalar multiplication by a positive constant to which we give the same designation. 

Let the orderings  *<*, -4.      on   n  and   36   be the same and be the usual ordering 

on the real line.      Let   FQ    and   Go   be distributions on   35   and take 

»V =   {Go" : weß}   „     jv = {FQW : wtß}   .     Without loss of generality we may 

assume that     EX = 1/Y   and   EY = \/\ .    Now we define   ^(x) = Fo(x/X)     , 

G(x) = Go(x/Y)   and these two estimates are ample for   9     and jtf ,  respectively. 

The assumptions of theorem one are seen to be satisfied and  9   is the 

unique element of n   such that 

oo 

(4.1) f   Fo(ex) dGo(x) = 6 
0 
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but then   9    = yui \       so a. s. we have by the corollary 

oo       e x • 
(4.2) H((o ) = H (9 ) =  / F  (—£-) dG  (-i^) 

e o     «       »g      o  »yX o   x.Y 

which must needs be.tabulated at points of interest. 

The integrations (4. 1) and (4.2) might be difficult to perform and 

could require numerical integration techniques depending upon   FQ   and   Go '. 
*    *       • 

In order to continue,  let us make the mathematically convenient assumptipn 

that the densities exist and are given by 

(k/2)-l   -x/2 
f
0
(x) = * kTi  >  sr W = e"X > 

r(k/2)2k/2 • 0   . 

where   k   is a known parameter of the chi-square distrfbutiori. 
• • • 

Thus from (4. 1) we obtain 

■• • 

00 00 . * 

/ F '(ex)e"Xdx   =   / e"y/ef  ^dy   =   (1 + 2/e)"k/2 

o o      •     0 '       • 
-2/k 

and   9    = 2/(€ - 1),    but fortunately this integration solves (4.2) and we> 

see 

Ho(e£)    =    (I + ZyX/Q\Y)'k/Z 

from which the probability distribution can be found by a simple transformation, 

using tables of the   F   distribution,   since   -yX"   has a chi-square distribution 

with   kn   degrees of freedom and   2 X.Y   has a chi-square distribution with    2m 

degrees of freedom where   n   and   m   are the sample sizes used in computing 

X   and #Y,  respectively. 
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5.   Ample Estimates of Distributions 

In this note we restrict ourselves to estimates   F   of   F   which are 
• n 

ample.    This property could be of some importance in other applications since 

in particular   F"'  ample for   xh     tells us that the analogue of the   D     statistic, 

say, 

D=   sup   |F(x)-F(x)|    =   sup       |F'F"1(y)-y| 
. ••       xc« y€(0, 1) 

is distribution-free .with respect to   J1 

•Ampleness of an estimate of a distribution   F   is a strong property since, 

in many instatices, it allows us to place confidence contours along the entire 

distribution function.    Suppose    F    is ample for    a*- *, a set of distributions on 

.  the real line,  and     r       is some distribution function on the unit interval which •    *    « ^ 
« » .      ^ -1 
is in the range of   FF       and for some constant    ß   we have 

p = P [ FF"1 < £,]   >   P-[?.~1F'<F] 
• * • a 

-1 . -1 ^^ * 
where   £,    (t) = inf {y : ^(x)  > t}   then   t,     F     provides a lower contour for   F 

with   p   confidence. 

We have ampleness within those families of distributions on the real 

line for which one can estimate percentiles and boi^nds on those estimates from 

observations in the region of central tendency such as normal,  log-normal, 

exponential,   etc.    But we may have ampleness for distributions on spaces of 

higher dimension, as the following two examples show.   * 

Let   J&   be the set of CD ritinuous distributions on any partially ordered 

set (36^ •<» )   as defined in section  2 .    For   y e 36   define   c(-,y)   to be the 
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indicator (characteristic) function of the set   [Y «< y] .    Then 

m 
(5.1) G(x) =  -Z   £    c(x,Y) 

i=l i 

is an ample estimate of the distribution   G e &     from the sample   (Y,, ..., Y ) l'       '   n 

of independent observations each with distribution   G.    We shall call   G     the 

empiric cumulative. 

Let   3S     be Euclidean   p-space, with   -4       the usual ordering, the 

elements of which we shall take to be column vectors.    Let   X   be   Tt-iv-, S)   and 

let   D   be the non-singular matrix such that   DSD' = I.    We shall say here,  for 

brevity, that   D   diagonalizes   2.     Then we can write   F(x) = F [D(x - |j.)]   for 

X€ 3^  > where • F     is the distribution of a    7t(0,l)   variate. 

Let   n   and   S   be the usual maximum likelihood estimates taken from 

a sample of size   n > p   and define   D     as the diagonalizing matrix for   S  .    It 

exists a. s.    Now if we define 

(5.2) * (r(x) = D(x - n)' 

and the corresponding definition of   o-  then fix   y e 76.    and set 

(5. 3) T = ^o-'^y) = DD'^y - Djf  - pi)]    , 

that this has a distribution which is the same for all   yi , 2" is sufficient for 

ampleness*.   But clearly   D(JJ. - u.)   is     0*1(0, — I)   so it is sufficient that the 
n 

vector in square brackets in  (5, 3) satisfies the condition. 

-    -1 
Set   B  = DD      ,     We show that this has a distribution independent of 

|JI , 2   also.    From (5. 2) we have 
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(5.4) BD S D'B'  =   I   . 

n-1 
But   nDSD'    is distributed as     £)   Z.Z".   where   Z.   is ^(0,1) 'independent 

i = l 
of   Z.(i # j)   . 

Hence,  except for zero probability;   B   diagonalizes a random matrix 

which has a distribution independent of   |i., 2 .    Note that   T'T   is,  except for 

2 .       • , 
a scale factor,  Hotelling's   T     with non-centrality factor   y'y/n . 

6.    Some Remarks on Properties of the Estimate   H 

Let us set* F = EF    with similar meaning for   G and   H".   -By applying 

the Fubini theorem and integrating by parts we have for co 
* 

• H(u) =    / Tw du" 
* 

and 

H(ci) - H(w) = / Fw d(G - G) +   / (Fw - Fw) dG   . 

Remark 6. 1:   H   is an unbiased estimate of   H   on   n. if   F   and   G   are unbiased 

estimates of   F   and   G,    respectively. 

The converse is not true without additional assumptions.    For the real 

line,  unbiasedness of   H   on the entire set of   1-1 order preserving maps of 

onto itself is sufficient for unbiasedness of   F    and   G   when one imposes the 

conditions that   F   and   G     are continuous. 

We say that   F     is consistent for   F   whenever n 

i ~ i    P s im    |  Fn - FI   ->   0   , 

where,  as before, the subscript   n   refers to the sample size used to obtain 
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the estimate.    We shall refer to consistency exclusively in this sense. 

Now 

HM - H(co)  =   / (G - G) dF^o +   fifu- Fw) dG   . 

Thus it follows that 

|H(a)) - H(w) | <   sup IF-F| + sup    IG.-Gl    . _     % £ 

Remark 6.2:   If   F    and   G      are consistent for   F   and   G,  respectively,    then n m , ' 

H is consistent for   H   uniformly on   S2  as   l/n + 1/m -••   0 . 
mn " •     .   • 

Remark 6. 3:   If   F     and   G      are the empiric cumulatives, then   H       ,    for 
n m ' .  mn ' 

each   wen ,  is consistent,  unbiased and asymptotically normal with   l/n + 1/m -«• 0. 

This follows from the known behavior of   U-Statistics. 

If we assume   F    is consistent and   G   is the empiric cumulative, we 

should obtain asymptotic normality if   F " stabilizes" rapidly enough.    We do not 

attempt to find the weakest such conditions,  but we have 

Remark 6. 4:   If   G   is the empiric cumulative, then the function   H, defined by 

1    m 

H      (co)  =   -   Tj   Fl(wY.) mn m ,-;     n      1 
]=1 

is a consistent estimator of   H *and asymptotically normal if   l/n + 1/m -*   0 

in such a way that   N/ rrf sup IF   - F|   -*   0 . 
1      m . 

Proof:   Let   Z     =-= /,   [F(ajY.) - H(co)]   and define    t, by the equation m     v m . —'. ] m, n 
^ i-1 

\f m" [H      (w) - H(«)] = Z    +  t, .    That. Z      is asymptotically normal is clear, mn n        m,n m 
P and the result follows if   £ ~*   0 > which is guaranteed by the hypothesis. 
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7.   An application to Reliability Theory 

Let    Ik   - (0, oo)   and let   Y{w)   be the demand time for a particular 

equipment in a specified environment during an inspection period of length   co . 

Let   X   be the life length of this equipment under continued use in that 

environment. 

We want the maximum     u   such that for given   € > 0 

P[X < Y(CJ)] < €    . 

We particularize by making the assumption that   Y(ca)   denotes multiplication and 

without loss of generality we suppose that a scaling factor has been introduced 

so that   co« (0, 1) .    Now 

H(w)   =P[X<wy]=    /F(wy)dG(y) 

where we assume that   X  and   Y   are independent   r. v. s.    with continuous 

distributions   F   and   G   respectively. 

Now if   F   is a distribution with derivative   f, then the function   Y' 

defined by 

(7.1) Y'CX)   =   1 ^(x)    for   x>0 

is called the failure rate  (or hazard rate). 

A common and intuitively appealing assumption concerning life length 

distributions is 

A"   the failure rate of   X   exists and is non-decreasing. 

We also assume 

B"   X   is stochastically larger than   Y,  i.e.,    F<G . 
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But, further, without loss of generality we assume 

(7.2) "I   > e > 0   is given and   P[X < Y] > e    . 

Let 

x . 
Y(x)   =   f Y'(t)dt   for   x > 0 

0 

Then if we set 

Fo(x) =Go(x) = 1 - e"      ,    x   >   0   , .       • 

from (7.1) we see that   G(x) = Go X.(x) . 

It is clear that   B0   implies   y   <    ^   and we now show that   A0   implies 

■yco  <   u-y   and thus (3. 10. 1) implies assumption (3.9) of theorem 2 .     To see 

this,  note'that    ^   must be .convex and hence   y{ux) < WY(X)   for   w « (0, 1) 

since   y{0) = 0.    This is precisely our condition. 

We now seek the unique   8   such that 

. 00 

(7.3) •        /    Fo(ex) dGo(x) =   e    . 
.   0 

This may be easily integrated directly or by comparison with (4. 1) seen to be 

'e   = -r-^  . 
6 1-6 

We now choose   F,    G   to be the empiric cumulatives as defined in (5. 1) 

(which are ample).    Hence we need tabulations of the statistic 

«   _i       -.     _i ,       n m 
Ho(e)  =    fPF     SdGG       =—    7, V   c(0U.,V.) J mn   . M .   , )      1 1=1 j=l 

where   F(X.) = V.    ,    i = 1, . . . , n,  and   G(Y.)  = U.    for   j  = 1, . . . , m   are all 

independent r.v.'s uniform on (0, 1). 
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Consider the events 

Ak = [V(k)<6<V(k+1)]   ,    k  =0,...,n   , 

where   V,,xt..,,V, .   are the ordered observations of   V   with   V, . = 0 , 
(1)'       '    (n) (o) ' 

V.   ,14 = 1 •   These events   A,    form a disjunct partition of the sample space. 

It is clear that   H0(l) = U is the well-known Mann-Whitney 
m, n 

statistic based on samples of size   m   and   n.    Now let   S     (G) = mnHo (6) , 

and it follows that 

Smn(e) |Ak = Umk   for   k = 0,l,...,n   . 

With the convention that   U       =0   with probability one,  we obtain 
mo ' 

PtSmn(e)^  ^\l   PtSmn(e)   ^'V^V k=0 

— • n 
=   ^   b(k; n, e)P[U       <   t]   ,     t = 0, l,...,mn   , 

•   k=0 mK 

We know that   ES      (0) =  -r— 9   and since we have mn 2 

EU2     =   nSl{n + m+ 1) + (nm/z)2   , 
mn       12 ' 

it follows by (7.4) directly that 

ESmn(e) = |n 
b(k: "' e)EUmk k=0 

2 
m(m+l)n6 .   / _m    ,    m  xr   .        ,\r.Z  ,     „i 

12 ( 12       "i")!11^ " 1)e    + nel 

Hence we obtain the variance of   S      (9)   as mn 

,.    I,,.     i~\\       mn9 r-, 3m9   ,   (n - 1)9 ,   ., Var(S-  ^(9))  =  7— [2m — + N    ?  '    + 1] mn b £. i. 
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The results of the preceding section show that   S     (9)   has asymptoti- 
mn 

cally a normal distribution with the above mean and variance;   however,  for 

small sample sizes and small   6   the normal approximation may not be of 

sufficient accuracy.    In the following paragraph we give a few formulae in 

the range of   t = mn5   small.    This is near the region of interest since    a 

is small. 

Let   P     (t) = PfU       < tl.    Now,  from results and recurrence formulae 
mnv L   mn —   J ' 

in [3J, one can obtain the following: 

For   m >   1 ,    k > 0   , 

P   . (0) =    l/(m*k) for all   k   >  0 
mk k —       > 

W1' = < 
r i k = o , 

2/(m+k) k  >    1 

Pmk(2)    ~ ^    , //m4k 

1 if    m   <  2   or   k =   0, 1   , 

4/(m     ) if   m   >   2   and   k >   2   , 

1 jf   m   <  3   or   k =   0, 1   , 

mk' J   (4+k)/( rrVt'k) if   m   >  3   and   k   >  2   , 

and for greater values of   t   the numerators are functions of higher powers of   k. 

We have the expression 

(7.5) F[S      (9)    <   0]    =   V     b(k:A6)   =   E(rntn'  m'   e)     , 
mn        ~ k=0     {m*k) (m + n)9m 

k n 
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where the notation   E   is that'used in the Harvard Tables of the Binomial 

Distribution [4].    Through the use of these tables,   for moderate values, of 

m,   n and 9 , the probability (7. 5) can be calculated and for very small values 

of   9   the first terms of the expansion given can be used for adequate 

approximation. 

Similarly: 

for   n >, 1,    m > 1 , 

P[S      (9)<1]    =   (l-9)n
+   2E^   m+1\V-   , 

for   n > 1,    m >  2   , 

mn'     —   J -m+n,    m 
m 

P[S      (9)  <   2] = (1 - 9)n + ne(l - 9)n-1 +   E(m+n, m+2,  6) L mnv ' -     J      v .m + n. Qm 
m 

We now return to the reliability problem.    From the formulae preceding 

(or others similarly developed) we discover,  through tabulation, the   ath 

percentile of the   r. v.    S      (9)    ,  thus we find   6    ,  by dividing by mn,   such that 

P[H   (9) < 6   ]   =   a   . 

Then we set 

wc =   inf {we (0,1): H(to)    >   5   } 
o a 

which is the empiric derating percentage sought.    We know by the assumption 

A0    and   B°    that the theorem applies and thus 

P[H(wc)   >   i]   <   a 
o — 
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In this case,  for example,  if we chose   6=0   we would find that 

mln X 
wo max Y. 

which is intuitively appealing. 
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